
Fluxo: A System for Internet Service
Programming by Non-expert

Developers

Emre Kıcıman, Benjamin Livshits,
Madanlal Musuvathi, Kevin Webb

Microsoft Research, Redmond, WA

Building Internet Services

• What can non-experts do today?

• Can rent infrastructure.

– Amazon EC2, Microsoft Azure, …

– Getting and managing HW no longer bottleneck.

• Can build off-line, batch processing tasks

– Map-reduce and Dryad

– Fault-handling, scalability, performance all
handled by underlying system

Building Internet Services

• What about on-line services like Mail, IM,
News, Shopping, Social Networking?

• Today’s solution: Experts!!

– Based on experience; deep understanding of app
& design trade-offs

• Can we achieve same ease of development for
online services?

Patterns in Service Architecture

• Tiering: simplifies through separation

• Partitioning: aids scale-out

• Replication: redundancy and fail-over

• Data duplication & de-normalization: improve
locality and perf for common-case queries

• Pre-compute, queue or batch long-running
tasks

Patterns are not Cookie-cutter

• Patterns are application-dependent
– Workloads, data distributions, component

performance, consistency requirements

Insight: (almost all of) these are measurable in a
running system

• Build a runnable system before making
architectural choices? Then optimize it?

Fluxo Compiler

Profile-driven, Optimizing Compiler
• Restricted programming language

– Enforce assumptions of common patterns
– Simplify program analysis

• Collect metrics & analyze program
• Transform program, repeat
Status
• Built 1st prototype compiler & runtime

– Compiles to Azure

• Optimizations focus on latency

Focused on Latency optimizations

• Pre- and post-compute
– Subset of dataflow not affected by user input
– Compare cost of loading from pre-computed storage

to cost of computing on-the-fly

• Cache insertion
– Deterministic, side-effect-free subgraphs
– Compare expected cache performance to cache

management overhead

• Speculative execution (across requests)
– Use an event in one request to trigger execution of

parts of “next” request.

Test Suites: FLIMP & Pipes

Flimp code

• Flimp is our own
restricted language

• 4 custom web services

– Authentication

– Address Book

– Instant Messaging

– Persistent Messaging

• 100-500 LoC each

Yahoo Pipes

• Pipes is…
– Dataflow-based

program generator on
the web

– No persistent state

• A Fluxo front-end can
load and run Pipes
– 998 downloaded and

running

Pre-compute Savings in Pipes

• 500+ pipes have pre-computable nodes

0

1000

2000

3000

4000

5000

6000

7000

8000

A
ve

ra
ge

 la
te

n
cy

 (
m

s)
 Before

After

4%

66%

91%

93%

91%

Cache Savings in Flimp Samples

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

Sa
vi

n
gs

Related Work

• J2EE – provides implementation of common
patterns but developer still requires detailed
knowledge

• PIQL – restrict un-scalable storage queries,
provide performance visibility

• BOOM / BLOOM – uses datalog-like language
to implement distributed systems

• WaveScope – uses dataflow and profiling for
partitioning computation in sensor network

Summary

• Q: Can we automate architectural decisions?
– We’ve demonstrated some basic optimizations at

small-scale

– Focus so far on novice developer and latency
optimizations

• Next Challenges:
– Improving analysis techniques

– Expanding repertoire of available optimizations

• If successful would enable easier development
and improve agility

Questions

